Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 548
Filtrar
1.
Drug Metab Dispos ; 52(5): 408-421, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38575184

RESUMO

Metastasis is the most common pathway of cancer death. The lack of effective predictors of breast cancer metastasis is a pressing issue in clinical practice. Therefore, exploring the mechanism of breast cancer metastasis to uncover reliable predictors is very important for the clinical treatment of breast cancer patients. In this study, tandem mass tag quantitative proteomics technology was used to detect protein content in primary breast tumor tissue samples from patients with metastatic and nonmetastatic breast cancer at diagnosis. We found that the high expression of yin-yang 1(YY1) is strongly associated with poor prognosis in high-grade breast cancer. YY1 expression was detected in both clinical tumor tissue samples and tumor tissue samples from mammary-specific polyomavirus middle T antigen overexpression mouse model mice. We demonstrated that upregulation of YY1 expression was closely associated with breast cancer metastasis and that high YY1 expression could promote the migratory invasive ability of breast cancer cells. Mechanistically, YY1 directly binds to the UGT2B7 mRNA initiation sequence ATTCAT, thereby transcriptionally regulating the inhibition of UGT2B7 expression. UGT2B7 can regulate the development of breast cancer by regulating estrogen homeostasis in the breast, and the abnormal accumulation of estrogen, especially 4-OHE2, promotes the migration and invasion of breast cancer cells, ultimately causing the development of breast cancer metastasis. In conclusion, YY1 can regulate the UGT2B7-estrogen metabolic axis and induce disturbances in estrogen metabolism in breast tumors, ultimately leading to breast cancer metastasis. Disturbances in estrogen metabolism in the breast tissue may be an important risk factor for breast tumor progression and metastasis SIGNIFICANCE STATEMENT: In this study, we propose for the first time a regulatory relationship between YY1 and the UGT2B7/estrogen metabolism axis and explore the molecular mechanism. Our study shows that the YY1/UGT2B7/estrogen axis plays an important role in the development and metastasis of breast cancer. This study further elucidates the potential mechanisms of YY1-mediated breast cancer metastasis and the possibility and promise of YY1 as a predictor of cancer metastasis.


Assuntos
Neoplasias da Mama , Mama , Humanos , Animais , Camundongos , Feminino , Linhagem Celular Tumoral , Mama/metabolismo , Neoplasias da Mama/metabolismo , Estrogênios , Homeostase , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Glucuronosiltransferase/metabolismo , Fator de Transcrição YY1/genética , Fator de Transcrição YY1/metabolismo
2.
FASEB J ; 38(7): e23581, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38551642

RESUMO

Human DEAD/H box RNA helicase DDX6 acts as an oncogene in several different types of cancer, where it participates in RNA processing. Nevertheless, the role of DDX6 in pancreatic cancer (PC), together with the underlying mechanism, has yet to be fully elucidated. In the present study, compared with adjacent tissues, the level of DDX6 was abnormally increased in human PC tissues, and this increased level of expression was associated with poor prognosis. Furthermore, the role of DDX6 in PC was investigated by overexpressing or silencing the DDX6 in the PC cell lines, SW1990 and PaTu-8988t. A xenograft model was established by injecting nude mice with either DDX6-overexpressing or DDX6-silenced SW1990 cells. DDX6 overexpression promoted the proliferation and cell cycle transition, inhibited the cell apoptosis of PC cells, and accelerated tumor formation, whereas DDX6 knockdown elicited the opposite effects. DDX6 exerted positive effects on PC. RNA immunoprecipitation assay showed that DDX6 bound to kinesin family member C1 (KIFC1) mRNA, which was further confirmed by RNA pull-down assay. These results suggested that DDX6 positively regulated the expression of KIFC1. KIFC1 overexpression enhanced the proliferative capability of PC cells with DDX6 knockdown and inhibited their apoptosis. By contrast, DDX6 overexpression reversed the inhibitory effect of KIFC1 silencing on tumor proliferation. Subsequently, the transcription factor Yin Yang 1 (YY1) was shown to negatively regulate DDX6 at both the mRNA and protein levels. Dual-luciferase reporter assay verified that YY1 targeted the promoter of DDX6 and inhibited its transcription. High expression levels of YY1 decreased the proliferation of PC cells and promoted cell apoptosis, although these effects were reversed by DDX6 overexpression. Taken together, YY1 may target the DDX6/KIFC1 axis, thereby negatively regulating its expression, leading to an inhibitory effect on pancreatic tumor.


Assuntos
RNA Helicases DEAD-box , MicroRNAs , Neoplasias Pancreáticas , Fator de Transcrição YY1 , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Proliferação de Células , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Regulação Neoplásica da Expressão Gênica , Camundongos Nus , MicroRNAs/genética , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas/metabolismo , RNA Mensageiro , Fator de Transcrição YY1/genética , Fator de Transcrição YY1/metabolismo
3.
J Cell Mol Med ; 28(6): e18115, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38436544

RESUMO

Ovarian cancer is one of the most common gynaecological malignancies with poor prognosis and lack of effective treatment. The improvement of the situation of ovarian cancer urgently requires the exploration of its molecular mechanism to develop more effective molecular targeted drugs. In this study, the role of human ribosomal protein l35a (RPL35A) in ovarian cancer was explored in vitro and in vivo. Our data identified that RPL35A expression was abnormally elevated in ovarian cancer. Clinically, high expression of RPL35A predicted short survival and poor TNM staging in patients with ovarian cancer. Functionally, RPL35A knock down inhibited ovarian cancer cell proliferation and migration, enhanced apoptosis, while overexpression had the opposite effect. Mechanically, RPL35A promoted the direct binding of transcription factor YY1 to CTCF in ovarian cancer cells. Consistently, RPL35A regulated ovarian cancer progression depending on CTCF in vitro and in vivo. Furthermore, RPL35A affected the proliferation and apoptosis of ovarian cancer cells through PPAR signalling pathway. In conclusion, RPL35A drove ovarian cancer progression by promoting the binding of YY1 and CTCF promoter, and inhibiting this process may be an effective strategy for targeted therapy of this disease.


Assuntos
Neoplasias dos Genitais Femininos , Neoplasias Ovarianas , Proteínas Ribossômicas , Feminino , Humanos , Apoptose/genética , Proliferação de Células/genética , Neoplasias Ovarianas/genética , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Fator de Transcrição YY1/genética , Fator de Transcrição YY1/metabolismo , Fator de Ligação a CCCTC/genética
4.
Chem Biol Drug Des ; 103(3): e14472, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38458967

RESUMO

Brucine is a weak alkaline indole alkaloid with wide pharmacological activities and has been identified to protect against rheumatoid arthritis (RA) process. Circular RNAs (circRNAs) are also reported to be involved in the pathogenesis of RA. Here, we aimed to probe the role and mechanism of Brucine and circ_0139658 in RA progression. The fibroblast-like synoviocytes of RA (RA-FLSs) were isolated for functional analysis. Cell proliferation, apoptosis, invasion, migration, as well as inflammatory response were evaluated by CCK-8 assay, EdU assay, flow cytometry, transwell assay, and ELISA analysis, respectively. qRT-PCR and western blotting analyses were utilized to measure the levels of genes and proteins. The binding between miR-653-5p and circ_0139658 or Yin Yang 1 (YY1), was verified using dual-luciferase reporter and RNA pull-down assays. Brucine suppressed the proliferation, migration, and invasion of RA-FLSs, and alleviated inflammation by reducing the release of pro-inflammatory factors and macrophage M1 polarization. RA-FLSs showed increased circ_0139658 and YY1 levels and decreased miR-653-5p levels. Circ_0139658 is directly bound to miR-653-5p to regulate YY1 expression. Brucine treatment suppressed circ_0139658 and YY1 expression but increased YY1 expression in RA-FLSs. Functionally, circ_0139658 overexpression reversed the suppressing effects of Brucine on RA-FLS dysfunction and inflammation. Moreover, circ_0139658 silencing alleviated the dysfunction and inflammation in RA-FLSs, which were reverted by YY1 overexpression. Brucine suppressed the proliferation, migration, invasion, and inflammation in RA-FLSs by decreasing YY1 via circ_0139658/miR-653-5p axis.


Assuntos
Artrite Reumatoide , MicroRNAs , Estricnina/análogos & derivados , Sinoviócitos , Humanos , Sinoviócitos/metabolismo , Sinoviócitos/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/genética , Artrite Reumatoide/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Fibroblastos/metabolismo , Proliferação de Células , Células Cultivadas , Apoptose , Fator de Transcrição YY1/genética , Fator de Transcrição YY1/metabolismo
5.
J Ethnopharmacol ; 325: 117857, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38350506

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Bushen Zhichan decoction (BSZCF) is derived from Liuwei Dihuang Pill, a famous Chinese herbal formula recorded in the book Key to Therapeutics of Children's Diseases. It has been widely used as a basic prescription for nourishing and tonifying the liver and kidneys to treat Parkinson's disease (PD), but its mechanism remains to be explored. AIM OF THE STUDY: BSZCF, a Chinese herbal formula comprising five herbs: Rehmannia glutinosa (Gaertn.) DC., Dioscorea oppositifolia L., Cornus officinalis Siebold & Zucc., Fallopia multiflora (Thunb.) Haraldson and Cistanche tubulosa (Schenk) Wight, is used clinically to treat PD. In vivo and in vitro experiments were designed to elucidate the mechanism of BSZCF in the protection of dopamine (DA) neurons and the treatment of PD. The toxicity of excitatory amino acids (EAA) may be attenuated by inhibiting the transcription factor Yin Yang 1 (YY1) and up-regulating the expression of excitatory amino acid transporter 1 (EAAT1). MATERIALS AND METHODS: IN VIVO: After 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) was intraperitoneally injected into specific pathogen free (SPF) C57BL/6J mice, model mice were intragastrically given adamantane hydrochloride tablets (AHT) or different doses of BSZCF for 14 days. Both open field and pole-climbing tests were conducted to assess behavioral changes. In vitro: 1-Methyl-4-phe-nylpyridiniumiodide (MPP+)-injured human neuroblastoma cells (SH-SY5Y) were utilized to construct PD cell models. Primary astrocytes were transfected with EAAT1 and YY1 lentiviruses for EAAT1 gene knockout and YY1 gene knockout astrocytes, respectively. The high performance liquid chromatography-mass spectrometry (HPLC-MS) analysis of BSZCF was performed to control the quality of blood drugs. The optimal concentration and time of PD cell models treated by BSZCF were determined by the use of Cell Counting Kit-8 (CCK8). Enzyme-linked immunosorbent assay (ELISA) was used for measuring glutamate (Glu) in the peripheral blood and cells of each group. Western blotting (WB) and real-time quantitative polymerase chain reaction (qPCR) were used to detect tyrosine hydroxylase (TH), dopamine transporters (DAT), EAAT1 and YY1 protein and mRNA. After the blockade of EAAT1, immunofluorescence (IF) assay was used to detect the TH protein in each group. RESULTS: In vivo research showed that BSZCF improved the behavioral symptoms of PD mice, and reduced the death of DA neurons and the level of Glu. The mechanism may be related to the decrease of YY1 expression and the increase of EAAT1 levels. In vitro experiments showed that the anti-excitatory amino acid toxicity of BSZCF was achieved by inhibiting YY1 expression and regulating EAAT1. CONCLUSIONS: By inhibiting YY1 to increase the expression of EAAT1 and attenuating the toxicity of Glu, BSZCF exerts the effect of protecting DA neurons and treating PD-like symptoms in mice.


Assuntos
Neuroblastoma , Doença de Parkinson , Criança , Humanos , Camundongos , Animais , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Transportador 1 de Aminoácido Excitatório/genética , Transportador 1 de Aminoácido Excitatório/metabolismo , Dopamina , Camundongos Endogâmicos C57BL , Aminoácidos Excitatórios/uso terapêutico , Modelos Animais de Doenças , Fator de Transcrição YY1/genética , Fator de Transcrição YY1/metabolismo , Fator de Transcrição YY1/uso terapêutico
6.
Proc Natl Acad Sci U S A ; 121(2): e2219352120, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38165927

RESUMO

High levels of mitochondrial reactive oxygen species (mROS) are linked to cancer development, which is tightly controlled by the electron transport chain (ETC). However, the epigenetic mechanisms governing ETC gene transcription to drive mROS production and cancer cell growth remain to be fully characterized. Here, we report that protein demethylase PHF8 is overexpressed in many types of cancers, including colon and lung cancer, and is negatively correlated with ETC gene expression. While it is well known to demethylate histones to activate transcription, PHF8 demethylates transcription factor YY1, functioning as a co-repressor for a large set of nuclear-coded ETC genes to drive mROS production and cancer development. In addition to genetically ablating PHF8, pharmacologically targeting PHF8 with a specific chemical inhibitor, iPHF8, is potent in regulating YY1 methylation, ETC gene transcription, mROS production, and cell growth in colon and lung cancer cells. iPHF8 exhibits potency and safety in suppressing tumor growth in cell-line- and patient-derived xenografts in vivo. Our data uncover a key epigenetic mechanism underlying ETC gene transcriptional regulation, demonstrating that targeting the PHF8/YY1 axis has great potential to treat cancers.


Assuntos
Neoplasias Pulmonares , Fatores de Transcrição , Humanos , Fatores de Transcrição/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Histona Desmetilases/metabolismo , Histonas/metabolismo , Transformação Celular Neoplásica , Neoplasias Pulmonares/genética , Fator de Transcrição YY1/genética , Fator de Transcrição YY1/metabolismo
7.
J Exp Clin Cancer Res ; 43(1): 1, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38163890

RESUMO

BACKGROUND: Ceramide metabolism is crucial in the progress of brain metastasis (BM). However, it remains unexplored whether targeting ceramide metabolism may arrest BM. METHODS: RNA sequencing was applied to screen different genes in primary and metastatic foci and whole-exome sequencing (WES) to seek crucial abnormal pathway in BM + and BM-patients. Cellular arrays were applied to analyze the permeability of blood-brain barrier (BBB) and the activation or inhibition of pathway. Database and Co-Immunoprecipitation (Co-IP) assay were adopted to verify the protein-protein interaction. Xenograft and zebrafish model were further employed to verify the cellular results. RESULTS: RNA sequencing and WES reported the involvement of RPTOR and ceramide metabolism in BM progress. RPTOR was significantly upregulated in BM foci and increased the permeability of BBB, while RPTOR deficiency attenuated the cell invasiveness and protected extracellular matrix. Exogenous RPTOR boosted the SPHK2/S1P/STAT3 cascades by binding YY1, in which YY1 bound to the regions of SPHK2 promoter (at -353 ~ -365 nt), further promoting the expression of SPHK2. The latter was rescued by YY1 RNAi. Xenograft and zebrafish model showed that RPTOR blockade suppressed BM of non-small cell lung cancer (NSCLC) and impaired the SPHK2/S1P/STAT3 pathway. CONCLUSION: RPTOR is a key driver gene in the brain metastasis of lung cancer, which signifies that RPTOR blockade may serve as a promising therapeutic candidate for clinical application.


Assuntos
Neoplasias Encefálicas , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Peixe-Zebra , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Ceramidas/uso terapêutico , Proteína Regulatória Associada a mTOR , Fator de Transcrição YY1/genética
8.
Mol Genet Genomic Med ; 12(1): e2281, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37658636

RESUMO

BACKGROUND: Gabriele-de Vries syndrome is a rare autosomal dominant genetic disease characterized by global development delay/intellectual disability, delayed language development, feeding difficulties, and distinctive facial dysmorphism. It is caused by pathogenic variants in YY1. METHODS: The current report describes a female patient with motor delay and a facial dysmorphism phenotype. We identified pathogenic mutations in the patient by whole-exome sequencing and confirmed them by Sanger sequencing. RESULTS: A novel heterozygous frameshift mutation NM_003403.5:c.458_476del (p. V153fs*97) in the YY1 gene was detected in the proband. Finally, we provide a case-based review of the clinical features associated with Gabriele-de Vries syndrome. A total of 28 patients with genetic abnormalities and clinical phenotypes have been reported in the literature thus far. CONCLUSIONS: The mutation site is reported for the first time, and its discovery would expand the mutation spectrum of the YY1 gene. The main clinical manifestations of Gabriele-de Vries syndrome are developmental delay/intellectual disability, craniofacial dysplasia, intrauterine growth delay, low birth weight, feeding difficulties, and rare congenital malformations. Genetic tests are crucial techniques for its diagnosis because of its nonspecific clinical manifestations.


Assuntos
Deficiência Intelectual , Anormalidades Musculoesqueléticas , Humanos , Feminino , Deficiência Intelectual/genética , Deficiência Intelectual/diagnóstico , Mutação , Fenótipo , Síndrome , Fator de Transcrição YY1/genética
9.
Cell Death Dis ; 14(12): 806, 2023 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-38065955

RESUMO

Radiotherapy is an important strategy in the comprehensive treatment of esophageal squamous cell carcinoma (ESCC). However, effectiveness of radiotherapy is still restricted by radioresistance. Herein, we aimed to understand the mechanisms underlying ESCC radioresistance, for which we looked into the potential role of YY1. YY1 was upregulated in radioresistant tissues and correlated with poor prognosis of patients with ESCC. YY1 depletion enhanced the radiosensitivity of ESCC in vitro and in vivo. Multi-group sequencing showed that downregulation of YY1 inhibited the transcriptional activity of Kinesin Family Member 3B (KIF3B), which further activated the Hippo signaling pathway by interacting with Integrin-beta1 (ITGB1). Once the Hippo pathway was activated, its main effector, Yes-associated protein 1 (YAP1), was phosphorylated in the cytoplasm and its expression reduced in the nucleus, thus enhancing the radiosensitivity by regulating its targeted genes. Our study provides new insights into the mechanisms underlying ESCC radioresistance and highlights the potential role of YY1 as a therapeutic target for ESCC.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Tolerância a Radiação , Humanos , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação para Baixo , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/radioterapia , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/radioterapia , Carcinoma de Células Escamosas do Esôfago/patologia , Regulação Neoplásica da Expressão Gênica , Via de Sinalização Hippo , Cinesinas/genética , Cinesinas/metabolismo , Tolerância a Radiação/genética , Fator de Transcrição YY1/genética , Fator de Transcrição YY1/metabolismo
10.
Nat Commun ; 14(1): 8420, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38110419

RESUMO

The GGGGCC hexanucleotide repeat expansion mutation in the chromosome 9 open reading frame 72 (C9orf72) gene is a major genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia (C9ALS/FTD). In this study, we demonstrate that the zinc finger (ZF) transcriptional regulator Yin Yang 1 (YY1) binds to the promoter region of the planar cell polarity gene Fuzzy to regulate its transcription. We show that YY1 interacts with GGGGCC repeat RNA via its ZF and that this interaction compromises the binding of YY1 to the FuzzyYY1 promoter sites, resulting in the downregulation of Fuzzy transcription. The decrease in Fuzzy protein expression in turn activates the canonical Wnt/ß-catenin pathway and induces synaptic deficits in C9ALS/FTD neurons. Our findings demonstrate a C9orf72 GGGGCC RNA-initiated perturbation of YY1-Fuzzy transcriptional control that implicates aberrant Wnt/ß-catenin signalling in C9ALS/FTD-associated neurodegeneration. This pathogenic cascade provides a potential new target for disease-modifying therapy.


Assuntos
Esclerose Amiotrófica Lateral , Demência Frontotemporal , Humanos , Demência Frontotemporal/genética , RNA , beta Catenina/genética , beta Catenina/metabolismo , Proteína C9orf72/genética , Expansão das Repetições de DNA , Esclerose Amiotrófica Lateral/genética , Fator de Transcrição YY1/genética , Fator de Transcrição YY1/metabolismo
11.
Int J Biol Sci ; 19(16): 5218-5232, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37928273

RESUMO

The centromere proteins (CENPs), a critical mitosis-related protein complexes, are involved in the kinetochore assembly and chromosome segregation. In this study, we identified that CENPA was significantly up-regulated in HCC and highly expressed CENPA correlated with poor prognosis for HCC patients. Knockdown of CENPA inhibited HCC cell proliferation and tumor growth in vitro and in vivo. Mechanistically, CENPA transcriptionally activated and cooperated with YY1 to drive the expression of cyclin D1 (CCND1) and neuropilin 2 (NRP2). Moreover, we identified that CENPA can be lactylated at lysine 124 (K124). The lactylation of CENPA at K124 promotes CENPA activation, leading to enhanced expression of its target genes. In summary, CENPA function as a transcriptional regulator to promote HCC via cooperating with YY1. Targeting the CENPA-YY1-CCND1/NRP2 axis may provide candidate therapeutic targets for HCC.


Assuntos
Carcinoma Hepatocelular , Proteína Centromérica A , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/metabolismo , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Histonas , Neoplasias Hepáticas/metabolismo , Fator de Transcrição YY1/genética , Proteína Centromérica A/metabolismo
13.
Autoimmunity ; 56(1): 2281235, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37994046

RESUMO

Aggravated endoplasmic reticulum stress (ERS) and apoptosis in podocytes play an important role in lupus nephritis (LN) progression, but its mechanism is still unclear. Herein, the role of SMURF1 in regulating podocytes apoptosis and ERS during LN progression were investigated. MRL/lpr mice was used as LN model in vivo. HE staining was performed to analyze histopathological changes. Mouse podocytes (MPC5 cells) were treated with serum IgG from LN patients (LN-IgG) to construct LN model in vitro. CCK8 assay was adopted to determine the viability. Cell apoptosis was measured using flow cytometry and TUNEL staining. The interactions between SMURF1, YY1 and cGAS were analyzed using ChIP and/or dual-luciferase reporter gene and/or Co-IP assays. YY1 ubiquitination was analyzed by ubiquitination analysis. Our results found that SMURF1, cGAS and STING mRNA levels were markedly increased in serum samples of LN patients, while YY1 was downregulated. YY1 upregulation reduced LN-IgG-induced ERS and apoptosis in podocytes. Moreover, SMURF1 upregulation reduced YY1 protein stability and expression by ubiquitinating YY1 in podocytes. Rescue studies revealed that YY1 knockdown abrogated the inhibition of SMURF1 downregulation on LN-IgG-induced ERS and apoptosis in podocytes. It was also turned out that YY1 alleviated podocytes injury in LN by transcriptional inhibition cGAS/STING/IFN-1 signal axis. Finally, SMURF1 knockdown inhibited LN progression in vivo. In short, SMURF1 upregulation activated the cGAS/STING/IFN-1 signal axis by regulating YY1 ubiquitination to facilitate apoptosis in podocytes during LN progression.


Assuntos
Nefrite Lúpica , Humanos , Animais , Camundongos , Nefrite Lúpica/patologia , Camundongos Endogâmicos MRL lpr , Ubiquitinação , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Imunoglobulina G/metabolismo , Fator de Transcrição YY1/genética , Fator de Transcrição YY1/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
14.
J Mol Biol ; 435(23): 168315, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37858706

RESUMO

Enhancers activate their cognate promoters over huge distances but how enhancer/promoter interactions become established is not completely understood. There is strong evidence that cohesin-mediated loop extrusion is involved but this does not appear to be a universal mechanism. Here, we identify an element within the mouse immunoglobulin lambda (Igλ) light chain locus, HSCλ1, that has characteristics of active regulatory elements but lacks intrinsic enhancer or promoter activity. Remarkably, knock-out of the YY1 binding site from HSCλ1 reduces Igλ transcription significantly and disrupts enhancer/promoter interactions, even though these elements are >10 kb from HSCλ1. Genome-wide analyses of mouse embryonic stem cells identified 2671 similar YY1-bound, putative genome organizing elements that lie within CTCF/cohesin loop boundaries but that lack intrinsic enhancer activity. We suggest that such elements play a fundamental role in locus folding and in facilitating enhancer/promoter interactions.


Assuntos
Regiões Promotoras Genéticas , Ativação Transcricional , Fator de Transcrição YY1 , Animais , Camundongos , Sítios de Ligação/genética , Cromatina/genética , Elementos Facilitadores Genéticos/genética , Estudo de Associação Genômica Ampla , Regiões Promotoras Genéticas/genética , Fator de Transcrição YY1/química , Fator de Transcrição YY1/genética , Células-Tronco Embrionárias
15.
Pathol Res Pract ; 251: 154885, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37862922

RESUMO

In accordance with the World Health Organization, cancer is the second leading cause of death in patients. In recent years, the number of cancer patients has been growing, and the occurrence of cancer in people is becoming more common, primarily due to lifestyle factors. Yin Yang 1 (YY1) is a transcription factor that is widespread throughout. It is a zinc finger protein, falling under the GLI-Kruppel class. YY1 is known to regulate transcriptional activation and repression of various genes associated with different cellular processes such as DNA repair, autophagy, cell survival and apoptosis, and cell division. Meanwhile, EZH2 is a histone-lysine N-methyltransferase enzyme encoded by gene 7 in humans. Its main function involves catalyzing the addition of methyl groups to histone H3 at lysine 27 (H3K27me3), and it is involved in regulating CD8 + T cell fate and function. It is a subunit of a Polycomb repressor complex 2 (PRC2). The EZH2 gene encodes for an enzyme that is involved in histone methylation and transcriptional repression. It adds methyl groups to lysine 27 on histone H3 (H3K27me3) with the help of the cofactor S-adenosyl-L-methionine. In addition to its role in epigenetic regulation, EZH2 also acts as a regulator of CD8+ T cell fate and function. EZH2 has been implicated in T Cell Receptor (TCR) signaling via the regulation of actin polymerization. In fact, EZH2 is involved in numerous signaling pathways that lead to tumorigenesis. EZH2 is mutated in cancer and shows overexpression. Due to its mutation and overexpression, the cells that help combat cancer are suppressed and carcinogenicity is promoted. The association of EZH2 and YY1 poses an intriguing mechanism in relation to cancer.


Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste , Neoplasias , Humanos , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Histonas/genética , Complexo Repressor Polycomb 2/genética , Lisina , Epigênese Genética , Yin-Yang , Neoplasias/genética , Fator de Transcrição YY1/genética , Fator de Transcrição YY1/metabolismo
16.
BMC Pharmacol Toxicol ; 24(1): 50, 2023 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-37828612

RESUMO

Chemotherapy resistance hinders the successful treatment of osteosarcoma (OS) to some extent. Previous studies have confirmed that metformin (Met) enhances apoptosis induced by chemotherapeutic drugs, but the underlying mechanism remains unclear. To establish adriamycin (ADM)-resistant MG-63 (MG-63/ADM) cells, the dosage of ADM was progressively increased. The results of qRT-PCR and Western blotting demonstrated that the expression level of Yin Yang 1 (YY1) and multi-drug resistance-1 (MDR1) in MG-63/ADM cells were remarkably increased compared with those in MG-63 cells. Met dramatically enhanced ADM cytotoxicity and accelerated apoptosis of MG-63/ADM cells. Moreover, Met suppressed the expressions of YY1 and MDR1 in MG-63/ADM cells. YY1 promoted its transcriptional expression by directly binding to the MDR1 promoter. Furthermore, the effects of Met on ADM sensitivity in MG-63/ADM cells was reversed due to overexpression of YY1 or MDR1. Collectively, these findings suggested that Met inhibited YY1/MDR1 pathway to reverse ADM resistance in OS, providing a new insight into the mechanism of Met in ADM resistance of OS.


Assuntos
Doxorrubicina , Osteossarcoma , Humanos , Doxorrubicina/farmacologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Resistência a Múltiplos Medicamentos/genética , Apoptose , Osteossarcoma/tratamento farmacológico , Osteossarcoma/genética , Linhagem Celular Tumoral , Fator de Transcrição YY1/genética , Fator de Transcrição YY1/metabolismo
17.
Biosci Rep ; 43(10)2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37815922

RESUMO

YY1 is a ubiquitously expressed, intrinsically disordered transcription factor involved in neural development. The oligomeric state of YY1 varies depending on the environment. These structural changes may alter its DNA binding ability and hence its transcriptional activity. Just as YY1's oligomeric state can impact its role in transcription, so does its interaction with other proteins such as FOXP2. The aim of this work is to study the structure and dynamics of YY1 so as to determine the influence of oligomerisation and associations with FOXP2 on its DNA binding mechanism. The results confirm that YY1 is primarily a disordered protein, but it does consist of certain specific structured regions. We observed that YY1 quaternary structure is a heterogenous mixture of oligomers, the overall size of which is dependent on ionic strength. Both YY1 oligomerisation and its dynamic behaviour are further subject to changes upon DNA binding, whereby increases in DNA concentration result in a decrease in the size of YY1 oligomers. YY1 and the FOXP2 forkhead domain were found to interact with each other both in isolation and in the presence of YY1-specific DNA. The heterogeneous, dynamic multimerisation of YY1 identified in this work is, therefore likely to be important for its ability to make heterologous associations with other proteins such as FOXP2. The interactions that YY1 makes with itself, FOXP2 and DNA form part of an intricate mechanism of transcriptional regulation by YY1, which is vital for appropriate neural development.


Assuntos
Proteínas Intrinsicamente Desordenadas , Proteínas Intrinsicamente Desordenadas/genética , Proteínas Intrinsicamente Desordenadas/metabolismo , Fator de Transcrição YY1/genética , Fator de Transcrição YY1/metabolismo , DNA/metabolismo , Regulação da Expressão Gênica
19.
Int J Mol Sci ; 24(18)2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37762277

RESUMO

Aberrant expression of the tight junction protein claudin 6 (CLDN6) is a hallmark of gastric cancer progression. Its expression is regulated by the cAMP response element-binding protein (CREB). In gastric cancer induced by Helicobacter pylori (H. pylori) there is no information regarding what transcription factors induce/upregulate the expression of CLDN6. We aimed to identify whether CREB and Yin Yang1 (YY1) regulate the expression of CLDN6 and the site where they bind to the promoter sequence. Bioinformatics analysis, H. pylori lipopolysaccharide (LPS), YY1 and CREB silencing, Western blot, luciferase assays, and chromatin immunoprecipitation experiments were performed using the stomach gastric adenocarcinoma cell line AGS. A gen reporter assay suggested that the initial 2000 bp contains the regulatory sequence associated with CLDN6 transcription; the luciferase assay demonstrated three different regions with transcriptional activity, but the -901 to -1421 bp region displayed the maximal transcriptional activity in response to LPS. Fragment 1279-1421 showed CREB and, surprisingly, YY1 occupancy. Sequential Chromatin Immunoprecipitation (ChIP) experiments confirmed that YY1 and CREB interact in the 1279-1421 region. Our results suggest that CLDN6 expression is regulated by the binding of YY1 and CREB in the 901-1421 enhancer, in which a non-described interaction of YY1 with CREB was established in the 1279-1421 region.


Assuntos
Adenocarcinoma , Helicobacter pylori , Neoplasias Gástricas , Humanos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Lipopolissacarídeos/farmacologia , Fator de Transcrição YY1/genética
20.
Funct Integr Genomics ; 23(3): 269, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37552345

RESUMO

It is well-established that breast cancer is a highly prevalent malignancy among women, emphasizing the need to investigate mechanisms underlying its pathogenesis and metastasis. In this study, the Gene Expression Omnibus (GEO) database was utilized to conduct differential expression analysis in breast cancer and adjacent tissues. Upregulated genes were selected for prognostic analysis of breast cancer. The expression of urokinase plasminogen activator receptor (uPAR), also known as PLAUR, was assessed using RT-qPCR and western blot. Immunofluorescence staining was employed to determine PLAUR localization. Various cellular processes were analyzed, including proliferation, migration, invasion, apoptosis, and cell cycle. Bioinformatics analysis was used to predict transcription factors of PLAUR, which were subsequently validated in a double luciferase reporter gene experiment. Rescue experiments confirmed the impact of PLAUR on the proliferation, apoptosis, and migration of MDA-MB-231 cells. Furthermore, the effects of PLAUR were evaluated in an orthotopic tumor transplantation and lung metastasis nude mouse model. Our findings substantiated the critical involvement of PLAUR in the progression of triple-negative breast cancer (TNBC) in vitro and among TNBC patients with a poor prognosis. Additionally, we demonstrated Yin Yang-1 (YY1) as a notable transcriptional regulator of PLAUR, whose activation could transcriptionally enhance the proliferation and invasion capabilities of TNBC cells. We also identified the downstream mechanism of PLAUR associated with PLAU, focal adhesion kinase (FAK), and AKT. Overall, these findings offer a novel perspective on PLAUR as a potential therapeutic target for TNBC.


Assuntos
Neoplasias Pulmonares , Receptores de Ativador de Plasminogênio Tipo Uroquinase , Neoplasias de Mama Triplo Negativas , Fator de Transcrição YY1 , Animais , Feminino , Humanos , Camundongos , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , Transdução de Sinais , Neoplasias de Mama Triplo Negativas/genética , Fator de Transcrição YY1/genética , Fator de Transcrição YY1/metabolismo , Receptores de Ativador de Plasminogênio Tipo Uroquinase/genética , Receptores de Ativador de Plasminogênio Tipo Uroquinase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...